
A REAL-TIME
COMPUTER
ARCHITECTURE
BASED ON A CLIENT-
SERVER
APPROACH FOR A
MULTI-ARM ROBOT
MANIPULATION
(MARM) PLATFORM

D. Antonucci , A. Margan, A.
Laurenzi, A. Rodriguez, P.
Romeo, J. Barrientos, J.
Estremera, A. Rusconi,G.
Sangiovanni, N.G. Tsagarakis ,
and S. Cordasco

Overview

2

Mirror project

Software overview and control architecture

Architecture design

Safety

Use cases and validation

Discussion and conclusion

The SIROM provides
a multi-functional interconnect that combines mechanical,

electrical, data, and fluid interfaces into a single connection,
thus simplifying the design of the robot end-effector.

MIRROR project

3

MIRROR: Multi-Arm Installation Robot for Reading
ORUS and Reflectors:

• 3 x robotic arm/leg loco manipulation platform
• 6DOF , 1.2m long

• 14kg payload capacity on each arm

• High performance torque sensing and control actuation

• Semi-modular design

• Capable of performing loco-manipulation to
relocate itself while carrying a payload and
transporting it from one position to another

•The robot can use the arms to grapple standard
interconnects (SIs), installed on re-configurable tiles
over the station’s surfaces for locomotion purposes,
tile assembly, and handling of Orbital Replacement
Units (ORUs).

Software overview and Control architecture

4

Physical separation in term of embedded systems.

Client-Server approach.

• client/server protocol initialization (connect, disconnect, quit server, etc..);

• setting of control modes;

• start/stop actuation;

• release/engage brakes;

• read actuation states, force-torque sensor, IMU, power board date and the states
of other devices providing full telemetry of the robot state

• write actuation set point references;

• read/write service data object (calibration);

APIs provided:

• Position mode: Position controller + Current controller;

• Impedance mode: Impedance controller + Torque controller + Current controller;

Motor controllers available:

MIRROR project: Multi-Arm Installation Robot for Reading ORUS and Reflectors.

Architecture design

5

Msgpack library for packing and
unpacking data.

UDP protocol to exchange data, in
particular boost::asio library

Command handler.

Event handler.

6

bool Client::start_motors(const MST &motors_start)
{

CBuffT<4096u> sendBuffer{};
bool ret_cmd_status=false;
// packing
auto sizet= proto.packReplRequestMotorsStart(sendBuffer, motors_start);

// send
do_send(sendBuffer.data(), sendBuffer.size());
// ACK/NACK information
ret_cmd_status= get_reply_from_server(ReplReqRep::START_MOTOR,repl_msg);
return ret_cmd_status;

}

// Register Message Handler
registerHandler(ServerMsg::MSG_MOTOR_STATUS,&Client::motor_status_handler);

void Client::motor_status_handler(char *buf,size_t size)
{

_mutex_motor_status->lock();
static MSS motors_status;
// unpacking
auto ret

= proto.getEscStatus(buf, size, ServerMsg::MSG_MOTOR_STATUS,motors_status);
// manipulation
.......

_mutex_motor_status->unlock();
}

Architecture design

7

Two state machines were implemented to make the mechanism more consistent due to the asynchronous
protocol, helping high level robotic controller to send the commands in the right way, getting right feedback.

Architecture design

8

This sequence communication diagram of the overall system shows a typical use case to operate the robot:

Architecture design

Safety

9

Two safety controls were also
developed to verify:

Communication brakedown.

Communication degradation.

A recovery action is activated to safely terminate the operation of the
system and bring the robot actuation in idle mode engaging their brakes.

Safety

10

Communication degradation

• The rolling_mean functions in the boost library are used to evaluate the
communication quality in a specific window. The mean in that window is
controlled verifying the desired communication frequency for the data
exchange along the communication pipeline.

• Safety frequencies range allowed: greater a minimum frequency level of
225 Hz or less than or equal to 500 Hz.

• The rolling window size can be set before running the server process, the
default size of which is equal to 100.

Use cases and validation

11

Use cases and validation

12

https://advrhumanoids.github.io/XBotInterface/

https://advrhumanoids.github.io/XBotInterface/

Use cases and validation

13

Discussion and conclusion

14

..some extra demonstrations

Ackowledgement

16

Nikolaos TsagarakisStefano Cordasco Alessio MarganArturo LaurenziDavide Antonucci

Pablo Romeo Andres Rodriguez Jorge Barrientos Joaquin Estremera

Andrea Rusconi Guido Sangiovanni

Thank you
Davide Antonucci

davide.antonucci@iit.it

	Slide 1: A REAL-TIME COMPUTER ARCHITECTURE BASED ON A CLIENT-SERVER APPROACH FOR A MULTI-ARM ROBOT MANIPULATION (MARM) PLATFORM
	Slide 2: Overview
	Slide 3: MIRROR project
	Slide 4: Software overview and Control architecture
	Slide 5: Architecture design
	Slide 6: Architecture design
	Slide 7: Architecture design
	Slide 8: Architecture design
	Slide 9: Safety
	Slide 10: Safety
	Slide 11: Use cases and validation
	Slide 12: Use cases and validation
	Slide 13: Use cases and validation
	Slide 14: Discussion and conclusion
	Slide 15: ..some extra demonstrations
	Slide 16: Ackowledgement
	Slide 17: Thank you

